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The behaviour of a system which is reversible with respect to a mapping of the phase space in a 

neighbourhood of equilibrium positions that do not belong to the fixed set of the mapping is 

investigated. 

1. SOME PROPERTIES OF A REVERSIBLE SYSTEM WITH A PARAMETER 

LET us consider an autonomous reversible system of differential equations 

x* = f(x), Mf(x) + f(Mx) = 0; x E R” (1.1) 

where M is some constant n xn matrix. Let x0 be an equilibrium position, f(x’) = 0. Then, if 

#x0 =x0 (1.2) 

(k is an odd number), the equations of the perturbed motion in the neighbourhood of x0 are 
reversible [l] with the matrix M’. Otherwise the reversibility property need not be preserved. 

In mechanical problems M is an involution M2 = E [2]. In such cases the canonical form of 
the matrix M is 

(I+m=n) 

(Ej is the identity matrix of order j). Hence it follows that system (1.1) may be written in the 
form 

u’=U(u,v), v’=V(u,v); t&R’, vERm 

U(u, -v) = -U(u, v), V(u, -v) = V(u, v) 

and the set of fixed points, i.e. those satisfying (1.2), is the hyperplane 

u(~,p)= 0, v@,p)=O (0r,p - const) 
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(1.3) 

v=o. Let 
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Then in the neighbourhood of an equilibrium u = 01, v = p the equations of perturbed motion 
are obtained from (1.3) by replacing u and v by u + a, v + p (we will use the same notation for 
the variables) 

u’ = U(u, v, P), v’ = V(u, v, 0) (1.4) 

If Q=O, this system, like the original system (1.3), is reversible with matrix M. But if p ~0, the 
result is generally a reversible system with parameter p system (1.4) transforms into itself 
under the substitution c + -t, u -_) u, v + -v, p +-g. 

Together with system (1.4) we will also consider the system 

II’ = U(u, v, -/3),. V0 = V(u, v, -0) (1.5) 

Since 

Uh v, 4-0 = -U(u, -v, Ph V(u, v, 4) = V(u, -v, 0) 

It follows that to every solution u= duo, v”, r), v=w(u’, v”, r) (u” and v” being initial values) 
of Eqs (1.4) there corresponds a solution u = (p(u’, -v”, -t), v = -v(u”, v”, t) of system (1.5). 
This implies the following conclusions. 

1. If system (1.4) has a periodic (conditionally periodic) solution at p = p*, then it must have 
a periodic (conditionally periodic) solution at p = -0 * . 

2. To every invariant set G, of system (1.4) at p = p * there corresponds an invariant set G_ 
at p=-fi*. 

3. To every solution of system (1.4) at fi= p* that is asymptotic to G, as t -_)+- (r + -) 
there corresponds a solution that is asymptotic to G_ as t -hi -i (t + +-) at p = -/3 * . 

4. If G, is asymptotically stable (as t + +-) then G_ is unstable (as t increases) 
trajectories go to infinity. 

and all 

2. REVERSIBLE MECHANICAL SYSTEMS WITH A PARAMETER 

The Routh equations of steady motion for a holonomic mechanical system with cyclic 
coordinates 

d aR aR -- -=O, R=R2 +R, tR,, RI= g 2 
dt as* aq j=1 or=k+1 

raj(q)hd?j (2.1) 

(R, is the form of generalized velocities of order p, and p, are cyclic constants) are reversible 
with parameter p = @L+I, . . . , p,) these equations are invariant under the substitution I +-t, 
qj + qj, q; + -4; (j = 1, . . . , k), p, -3 -p, (a= k+ 1, . . . ) n). 

Similarly, the Hamilton equations which follow are reversible with a parameter p that can 
take values +l and -1 

q. = aHlap, p* = -aH/aq; H = Hz + PH1 + Ho (2.2) 

where Hj is the jth form of the momenta, and H is independent of time. 
Noting now that systems (2.1) and (2.2) may be stable only over the entire time axis (see, e.g. 

[3]) and recalling the conclusions of Sec. 1, we obtain the following theorem. 

Theorem 1. The system R = R, +R, + R, (H = H, + H, + Ho) is stable (unstable) together with 
the system R = R, -R, + R, (H = H, - H, + Ho). 

In the neighbourhood of the manifold of steady paths of a non-holonomic system, the 
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equations may be taken as follows [4]: 

x* =X(x, y, w, 2, c), y’ = Y(x, y, w, z, c), w’ = W(x, Y, WY z.4 
z-=Z(x,y,w,z,c); xERP; yER', w,zERk 
X(x, y, 0, 0, c) = 0, Y(x, y, 0, 0, c) = 0, W(x, y, o,o, cl = 0 

(2.3) 

Z(x, y, 0, 0, c) = 0 

(c being a parameter); in this form the equations are invariant under the substitution c + -t, 
x+-x, y+y, w+w, z+-2, c -_j -c. Therefore, if dissipative forces are in action at c = c*, 
the equilibrium position x = 0, y = 0, w = z = 0 is asymptotically stable with respect to w, z and 
each of the perturbed motions asymptotically approaches one of the steady motions of the 
family x = const, y = const, w = z = 0, then the forces at c = -c* are accelerative and each of 
the perturbed motions will leave a certain neighbourhood of the family. 

Using the Lyapunov-Malkin theorem [5], one can prove this assertion in cases when the 
problem is solved by a linear system. In fact, the linearized equations 

x’ = A,(i)w + B,(c)z, y’ = AZ (c)w + Bz (c)z 

w’ = A3(c)w + B3jc)z, z’ = Aq(c)w + B~(c)z (2.4) 

involve the constant matrices A,(c), B,(c), B&c), Ad(c), which are even functions of the 
parameter c, and B,(c), A,(c), A,(c), B4(c) which are odd functions of c. The characteristic 
equation of system (2.4) must have p + 1 zero roots. The remaining roots h(c) are determined 
from the equation 

A3b) - UcPh B3W 

P 

= 0 
A4 W B4W - Uc)Ek 

(2.5) 

and are odd functions of c. If at c = c* it turns out that Reh(c*) < 0 for all the roots (dissipative 
forces dominate), then at c = -c * we have ReX(-c*) > 0 for all roots and the accelerative forces 
predominate. 

We note [4] that dissipative forces act in the neighbourhood of the steady motions of a non- 
holonomic system even if there were no dissipative forces in the initial system (before the 
neighbourhood of the steady motions was reached) and the system was reversible. 

3. DISSIPATION ON THE BOUNDARY OF THE STABLE REGION 

Let us assume that the characteristic equation (2.5) has one pair of purely imaginary roots and 
the other roots have negative real parts. Then in that case system (2.3) may be asymptotically 
stable with respect to part of the variables w, z. 

Under these assumptions system (2.3) may be written as follows [6]: 

x;=a,p~+.Y,(x,p.e,~) (s=l,..., K=ptI) (3.1) 

P l =,il @/P +wx, /A 0, ?I) 

8’=... 

% l =,~~Pl’li+Hl(x,P.B,n) (i=l,... = ,4=2k-2) 
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where a,, bj, pQ are constants, all the eigenvalues of the matrix Ilp, II have negative real parts, 
and X, R and H are 2rr-periodic functions of 8 which vanish identically as functions of x and 8 
at p = 0, q = 0; p and 8 may be interpreted as polar coordinates. In addition, one can always 
ensure [6] that the functions X, contain no terms linear in p and q. 

The following cases may occur here. 
1. A pair of coefficients a,, b, exists such that a,b, >O. In that case system (3.1) is unstable in 

Lyapunov’s sense. The proof is carried out by standard means, by constructing a Chetayev 
function in the neighbourhood of the increasing ray of the first non-linear approximation. 

2. For all indices a,b, c 0. Then, using the substitution d(-b,a,)x, + X, (S = 1, . . . , K) one can 
always ensure that the conditions a, = -b, (S = 1, . . . , K) are satisfied. Assuming that this is 
indeed the case, we can now transform to general spherical coordinates 

xl =rcosql, x2 =rsinq~~cosq~, . . .,x,_1 =rsinq,cos+9,_, . . . cowl 
x,=rcoslp,costp,_~ . ..cosq., p=rsincp, (3.2) 

Then 

r’ =cosq,(X; i sinq,X~ t.. . t sincp,cosq,_, . . . coscp2X~__, + 

t cosqJ,cosi+9,_ 1 . . . co&p2 Xi) + siny7,R’ 

r sintp,& = -uir2 sinq, - X; t r’cosq, 

9 
. 

rli =,~ltqjvj+Ht(r,v,e,9) (i=4q..2 4) 

where X*, R*, H* are the functions X, R, H after the substitution (3.2). 
Consider the function 

(3.3) 

9 aw 9 
Y=rexp(-a,cosq,)t W(q), Z - Z PsjQj)j=-(~~ i.. . toi) 

s=l aQs j=l 

which is sign-definite relative to the variables r, q. The derivative of V along trajectories of 
(3.3) is 

V’ = -a] exp (-a, cosq, )r2 sinq, - (q: t . . . t 11:) t 

t exp(-a,cosq,) I--alXJ i (1 +alcosql)[cos~I(X~ + sinp2Xi + 

fsin~,cos~2x;t...tsin~,cosq,_1 . ..cosq2x._* . ..coslp2xK*_. t 

9 aw 
tcos~,coscp,_1 .I. cosq2X;)t sinq,R*] 1 t E - Hi’ 

i=l ap 

Since the functions X, contain no terms linear in p, q, and X, R, H vanish at p = 0, q = 0, it 
follows that 

V’ =-dexp(--a,cosq,)r2sin2cpl -(Q: t . . . t$)t 

where Y, ‘yi, YV vanish at r = 0, q= 0. 
The function V just constructed meets all the conditions of Rumyantsev’s theorem [7] on 

stability with respect to the variables r, ql, . . . , qq and asymptotic stability with respect to 
p = rsincp,, ql, . . . , q,. Also, it is evident from (3.3) that x + const as (p, q) + 0. 
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Theorem 2. If a pair of coefficients a,, b, exists such that a,b, >O, then the trivial solution 
x = 0, p = 0, q = 0 of system (3.3) is unstable in Lyapunov’s sense. But if a,b, < 0 for all such 
pairs, then the trivial solution is stable, in fact, asymptotically stable with respect to part of the 
variables p, q, and each of the perturbed motions asymptotically approaches a steady motion of 
the K-family. 

x=amst, p=O, 7)=0 

4. EXAMPLE. PERMANENT ROTATIONS OF A HEAVY CONVEX RIGID 
BODY ON AN ABSOLUTELY ROUGH FIXED HORIZONTAL PLANE 

Retaining the notation of [8], let the equations of motion be 

~w’+~~(Q.w)=mgtX~-mrX[w’Xr+wXr’+~X(~~t)l (4.1) 

-y*+wxy=o 

To get a closed system, we add a relation f(r)= 0 defining the surface of the body: the relationship 
between the vectors r and 7 will be 

7 = -gradfWl gradffr) I 

System (4.1) is reversible; it is a special case of (1.3) with vectors u = 7, v = o. As shown in [S], they 

have a particular solution 

Y, =y* =o, ya = 1, w, =wa =o, w, =wg (4.2) 

(a+, is an arbitrary constant), corresponding to permanent rotation of the body at angular velocity w, 
around one of its principal central axes of inertia, which is the vertical axis, provided that it is orthogonal 
to the surface of the body. In the neighbourhood of (4.2) the equations of perturbed motion will have the 
same form as (2.3), with 

x=(.+-WI, y=r, -lrW=(Yr,Y,)T 2=(w,, CA+)= 

Therefore, if the solution (4.2) with rotation in one direction w, < 0 is asymptotically stable with respect 
to yi, yz, w,, w,, then on rotation in the other direction (w, >O) the motion will be unstable and each 

trajectory will leave a certain neighbourhood of zero in the space of the variables Ye, y2, w,, w,, 
Sufficient conditions for asymptotic stability to a first approximation may be found in [8]. For rotation 

of a body with a stable equilibrium position around the principal axis corresponding to the largest 
moment of inertia. these conditions are 

W@ <w.<O 

If w, = w,, the characteristic equation has a pair of purely imaginary roots and two roots with negative 
real parts [8], and system (4.1) has a periodic solution (Hopf bifurcation) [S]. It will then follow from Sets 

1 and 2 that if w, = -co. > 0 the pair of purely imaginary roots will also produce a periodic motion. 

Note that if w 0 = 0 (equilibrium), the equations of perturbed motion are reversible, the characteristic 
equation has two pairs of purely imaginary roots and, in the neighbourhood of the equilibrium position, 

two families of periodic Lyapunov motions exist [2]. 

The author thanks the referee for useful comments. 
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